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Abstract
Background: In the setting of the oral-gut-liver axis, microbiome dysbiosis has been associated with decompensated 
cirrhosis progression. However, little is known on salivary microbiome profiles in stable decompensated patients.
Methods: We studied patients with stable decompensated cirrhosis (n =28) and matched healthy controls (n =26). There 
were five patients (17.8 %) with hepatocellular carcinoma (HCC). Microbiomes of the 54 salivary samples were profiled 
through next-generation sequencing of the 16S-rRNA region in bacteria. 
Results: The two study groups (patients and controls) did not differ significantly concerning their baseline characteris-
tics. The most abundant phyla were Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria. Proposed dysbiosis 
ratio Firmicutes/Bacteroidetes was lower in patients than in controls (range: 0.05-2.54 vs. 0.28-2.18, p =0.4), showing 
no statistical significance. Phylum Deinococcus-Thermus was detected only in controls, while Phylum Planctomycetes 
only in patients. A-diversity analysis indicated low diversity of salivary microbiome in decompensated patients and 
patients with HCC, who presented specific discriminative taxa. On principal coordinate analysis (PCoA), the patients’ 
and controls’ salivary microbiomes clustered apart, suggesting differences in community composition (PERMANOVA 
test, p =0.008). Boruta wrapper algorithm selected the most representative genera to classify controls and patients (area 
under the curve =0.815).
Conclusions: Patients with stable decompensated cirrhosis of various etiology and history of complications have decreased 
diversity of their salivary microbiome. PCoA and Boruta algorithm may represent useful tools to discriminate the salivary 
microbiome in patients with decompensation. Further studies are needed to establish the utility of salivary microbiome 
analysis, which is easier obtained than fecal, in decompensated cirrhosis. HIPPOKRATIA 2020, 24(4): 157-165
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Introduction
Liver cirrhosis is acknowledged as an increasing 

cause of morbidity and mortality worldwide1. Patients 
with compensated cirrhosis may remain so for many 
years2, while survival for patients with decompensated 
cirrhosis is much lower3. Understanding the natural his-
tory of cirrhosis and the pathophysiology of disease pro-
gression, marked by complications, could help improve 
patients’ management4,5. Recently, new insights arise 
through applying advanced molecular techniques for the 
study of the human microbiome in the pathogenesis of 
liver cirrhosis and the development of decompensating 
complications6.

At least during the preceding decade, it has been re-
ported that the gut flora contributes to the pathogenesis of 
cirrhosis’ complications7. More specifically, altered mi-
crobiome or the so-called dysbiosis that occurs in the gut 
of patients with cirrhosis contributes to hepatic encepha-
lopathy. It leads to bacteria translocation, thus developing 
spontaneous bacterial peritonitis (SBP), bacteremia, and 
sepsis8. Preliminary data in advanced liver disease came 
from studies that analyzed the human microbiome in stool 
samples and confirmed that its composition differs sig-
nificantly in cirrhotics compared to healthy controls9,10. 
Bajaj et al introduced the ratio of “good vs. bad” taxa 
abundance termed the cirrhosis dysbiosis ratio (CDR)11.
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Recently, microbiome dysbiosis was found in both 
stool and saliva in cirrhotic patients with hepatic en-
cephalopathy12. Specific salivary microbial signatures 
have been certified in patients with minimal hepatic en-
cephalopathy, reflecting their cognitive function13. Ex-
isting studies focused on decompensated patients with 
hepatic encephalopathy, but similar dysbiosis in saliva 
might likely be present in those with other complications 
of cirrhosis.

Moreover, Qin et al had explained the role of the oral-
gut-liver axis in the pathogenesis of cirrhosis. The study 
supported that most of the changes in the gut microbi-
ome composition observed in cirrhosis were probably 
due to a massive invasion by bacteria originating from 
the mouth14. Accordingly, oral dysbiosis was shown in 
hepatitis B virus (HBV)-induced liver cirrhosis15 and in 
cirrhotic patients with hepatocellular carcinoma (HCC)16.

To our knowledge, the human microbiome has never 
been studied in salivary samples of patients with liver cir-
rhosis of diverse etiology and history of different etiology 
of decompensation. So, we analyzed the salivary micro-
biome in cirrhotics compared to that of healthy controls. 
Our efforts were to establish a distinct microbiome pro-
file in patients with stable decompensated cirrhosis.

Materials and methods
We prospectively studied all consecutive patients 

with stable decompensated cirrhosis presented for pre-
liver transplantation (LT) evaluation in our Hepatology 
Department during the first semester of 2017. Definition 
for decompensated cirrhosis included a history of asci-
tes, variceal bleeding, or encephalopathy in patients with 
known cirrhosis. Patients enrolled were stable concern-
ing their chronic liver disease: i.e., they had no decom-
pensating event during the preceding month before ad-
mission. Moreover, for those with alcoholic liver disease, 
we required six months of abstinence before inclusion in 
the study. Patients underwent a detailed clinical evalua-
tion, laboratory measurements, and radiological exams to 
exclude those suffering from clinical or subclinical infec-
tion. We obtained information regarding medication ad-
ministered for their liver disease, and we excluded from 
the study those who received steroids, antibiotics, or 
rifaximin during the preceding 12 weeks. We evaluated 
the severity of their liver disease by estimating the Model 
for End-Stage Liver Disease (MELD)17 and Child-Pugh 
(CTP)18 scores. Moreover, detailed demographic charac-
teristics were recorded for every patient.

Ultimately, we screened and studied 28 consecutive 
patients with stable decompensated cirrhosis of differ-
ent etiology with complete demographic and laboratory 
data. Their features at baseline were recorded, especially 
the history of the decompensating event. Every patient 
included in the study signed an informed consent form 
before enrolment. 

We also enrolled 26 matched healthy volunteers as 
controls for the study. Inclusion and exclusion criteria for 
controls were the same as for patients, excluding those 

who used antibiotics, probiotics, or corticosteroids within 
12 weeks before enrolment or those who had a history 
of alcohol consumption or dental disease. We designed 
matching the comparison group on restrictive criteria re-
garding age, sex, ethnicity, and other possible confound-
ing factors such as smoking to enhance statistical power. 
Healthy volunteers from our department, health care 
workers, or administrative staff consisted of the pool from 
which we selected control subjects to undergo matching 
with patients. We evaluated each participant’s interest, 
assessed variables pertinent to the matching criteria for 
the study, including sex, date of birth, and smoking sta-
tus. Before recruitment, we confirmed willingness to par-
ticipate, and an appointment was scheduled for sampling, 
following the same procedure as for patients. All healthy 
volunteers gave verbal consent before enrolment.

The study protocol was approved by the Institu-
tional Review Board and the Ethical Committee of Ar-
istotle University of Thessaloniki (decision No 20, date: 
22/1/2019). Its design conformed to the ethical guide-
lines of the 1964 Declaration of Helsinki and its later 
amendments.

The methodology used has been previously published 
by Gioula et al19 and is briefly described below. Saliva 
sample collection was followed by total genomic DNA 
extraction. Then, the construction of DNA libraries fol-
lowed, their concentration was determined to perform 
template preparation and next-generation sequencing. 
After that, 16s RNA sequence data were pre-processed. A 
total of 8,067,695 raw reads were generated, processed, 
and clustered into operational taxonomic units (OTUs) at 
97 % similarity. 8,212 OTUs were available for further 
analysis. The above procedure was also described in de-
tail by Zorba et al20.  

Statistical analysis of the microbiome data was per-
formed with the open-source R programming language 
3.3.1v while the vegan 2.4.2v21 and phyloseq 1.19.1v22 R 
packages were imported. We explored the relative abun-
dances of bacterial taxa at phylum, family, genus, and 
species level with Kruskal-Wallis non-parametric test, 
bar plots, heatmap plots, and Venn diagrams. The term 
abundance refers to the number of reads for each fam-
ily converted to a scale from 0 to 1. Thus, abundances 
for each family are expressed as a percentage of the total 
reads for each group.

Richness was evaluated, and the Shannon a-diversity 
index23 was calculated to explore the microbial diversity 
within each sample and detect differences in a-diversity 
among patients and controls. We implemented the linear 
discriminant analysis (LDA) Effect Size (LEfSe)24 meth-
od to detect differentially abundant taxa, with threshold 
LDA value 2.0 that described differences between con-
trols and patients. Subgroups of patients were also ex-
plored, patients were categorized according to the pres-
ence of HCC.

To consider b-diversity between the samples, we cal-
culated the Bray-Curtis dissimilarity matrix and applied 
principal coordinate analysis (PCoA). We used PCoA to 
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detect dissimilarities, where principal coordinate axes 
resulted from eigenvectors standardized by dividing the 
square root of their corresponding eigenvalue. It revealed 
taxa that counted more in total variance and used for pat-
tern visualization. OTUs did not appear more than five 
times in more than 25 % of the subjects were filtered 
out. To confirm significant differences between patients 
and controls and between the subgroups of patients, we 
implemented permutational multivariate analysis of vari-
ance (PERMANOVA)25 with 1,000 permutations together 
with PERMutational analysis of multivariate DISPersion 
(PERMDISP)26,27 to strengthen the results of the PER-
MANOVA test further. 

Boruta feature selection algorithm with a maximum 
number of 1,500 runs was implemented, using Boruta 
5.2.0v28 package at the genus level. We removed those 
taxa not seen more than five times in at least 25 % of the 
samples. In addition, the Random Forest29 classification 
algorithm was used with randomForest 4.6.12v30 pack-
age to examine the predictive power of selected genera 
and their contribution to the separation of controls and 
patients. 

 We implemented the Chi-square test to examine dif-
ferences between patients’ and controls’ gender. Also, the 
independent samples t-test examined differences between 
patients’ and controls’ age. The area under the receiver 
operating characteristic (ROC) curve was utilized to 
evaluate the discriminative ability of the Boruta algo-
rithm to classify patients with decompensated cirrhosis31. 
A p value <0.05 was considered statistically significant. 
The above-mentioned statistical analysis was conducted 
using the IBM SPSS Statistics for Windows, Version 25.0 
(IBM Corp., Armonk, NY, USA).

Results
We studied 28 stable decompensated patients (20 

males, age 53.1 ± 11.5 years). Baseline features are re-
ported in Table 1. Chronic viral hepatitis B or C was the 
cause of cirrhosis in 39 % of the patients. The mean value 
of the MELD score was 12 ± 3 and the median value of 
the CTP score was 7 (range: 5-11). There were 16 patients 
with MELD score <12, and nine patients were classified 
as CTP class A. Five patients (17.8 %) had HCC, while 
six patients (21.4 %) had a history of hepatic encephalop-
athy. Moreover, we analyzed 26 matched healthy controls 
(18 males, age 51.8 ± 10.4 years). The two groups did not 
differ significantly regarding their baseline characteris-
tics, age, and gender (Table 1).

Alterations in the composition of the salivary microbiome 
In the present study, 8,067,695 total raw reads were 

obtained. Exploration of relative abundance identified 14 
phyla and 113 families in all 54 study subjects, 28 pa-
tients, and 26 controls. Thirteen phyla and 95 families 
were identified in controls, and 13 phyla and 103 fami-
lies in patients. In total, the most abundant phyla detected 
were Firmicutes (38.43 %) and Bacteroidetes (29.88 %), 
followed by Proteobacteria (21.17 %), Fusobacteria 
(4.73 %), Actinobacteria (3.30 %), and Tenericutes (1.09 
%). The remaining eight phyla Spirochaetes, Chloroflexi, 
Verrucomicrobia, Synergistetes, Nitrospirae, Deinococ-
cus-Thermus, Cyanobacteria, and Planctomycetes, con-
tributed fewer than 2.0 % to the total abundance. Details 
about total abundance and the number of families for each 
phylum in controls and patients are depicted in Table 2. 
Phylum Deinococcus-Thermus was detected only in con-
trols, while Phylum Planctomycetes only in patients. 

Table 1: Baseline characteristics of the 28 decompensated patients and 26 healthy controls included in the study. 

Variable Patients
n =28

Controls
n =26 p value

Age (mean ± SD, years) 53.1 ± 11.5 51.8 ± 10.4 0.65
Gender, male, n (%) 20 (71) 18 (69) 0.86

Etiology of cirrhosis, n (%)
Viral hepatitis
Alcohol
Other 

11 (39)
11 (39)
6 (22)

MELD score (mean ± SD) 12 ± 3

MELD score <12, n (%)
MELD score >12, n (%)

16 (57)
12 (43)

CTP score (median, range) 7 (5-11)
CTP class A, n (%)
CTP class B/C, n (%)

9 (32)
19 (68)

History of complications
SBP, n (%)
GI Bleeding, n (%)
Encephalopathy, n (%)

3 (10.7)
10 (35.7)
6 (21.4)

HCC, n (%) 5 (17.8)
n: number, SD: standard deviation, MELD: Model for End-stage Liver Disease, CTP: Child-Pugh score, SBP: spontaneous bacterial peritoni-
tis, GI: gastro-intestinal, HCC: Hepatocellular carcinoma.
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We calculated the proposed Firmicutes/Bacteroidetes ra-
tio15 in our healthy controls and patients. Firmicutes were in-
creased in patients, while Bacteroidetes in controls. The ratio 
was lower in patients than in controls, but this difference was 
not significant [range: (0.05-2.54) vs. (0.28-2.18), p =0.4].

Regarding family level, 85 families were identified 
both in patients and controls: 18 families were unique 
in patients and 10 families in controls. The five most 
abundant families detected both in controls and patients, 
with no statistical difference in relative abundance, were 
Streptococcaceae (11.4 % vs. 20 %, respectively, p =0.29) 
and Veillonellaceae (7.47 % vs. 7.70 %, respectively, p 
=0.5) in phylum Firmicutes, Prevotellaceae (19.46 % vs. 
24.61 %, respectively, p =0.15) and Porphyromonadace-
ae (6.35 % vs. 6.11 %, respectively, p =0.56) in phylum 
Bacteroidetes, and Pasteurellaceae (8.96 % vs. 8.41 %, 
respectively, p =0.37) in phylum Proteobacteria. Among 
the 20 most abundant families in controls and patients, 
family Micrococcaceae in phylum Actinobacteria was 
detected to be more abundant in patients than in controls 
(3.45 % vs. 0.61 %, p =0.024). On the contrary, families 
Clostridiaceae (4.86 % vs. 2.69 %, p =0.004) and Clos-
tridiales Family XIII Incertae Sedis (1.71 % vs. 1.26 %, 
p =0.0006) in phylum Firmicutes, Sphingomonadaceae 
(1.65 % vs. 0.71 %, p =0.001), Enterobacteriaceae (1.10 
% vs. 0.00041 %, p =0.004), and Oxalobacteraceae (1.28 
% vs. 0.91 %, p =0.024) in phylum Proteobacteria, and 
Spirochaetaceae (1.39 % vs. 0.56 %, p =0.025) in phy-
lum Spirochaetes, were more abundant in controls.

Exploration of bacterial diversity
a-diversity in controls versus patients

We calculated the Shannon index to explore a-diver-

sity and used the non-parametric Kruskal-Wallis test to 
compare these indexes between patients and controls. Re-
sults demonstrated that the level of diversity of the sali-
vary microbiome was low in patients; comparison with 
that of healthy controls gave no statistical significance 
(p =0.27).

Moreover, we used the LEfSe method to identify the 
specific bacterial taxa in the salivary microbiome com-
position and resulted in 53 differentially abundant taxa 
that contributed to differences between patients and 
controls (Figure 1). Thirty-one taxa were significantly 
increased in abundance in controls, and 22 taxa were 
significantly increased in patients. Families Coriobac-
teriaceae (Actinobacteria), Prevotellaceae (Bacteroide-
tes), and Erysipelotrichaceae (Firmicutes) were found in 
more abundance in controls, whereas families Micrococ-
caceae (Actinobacteria), Lactobacillaceae (Firmicutes), 
and Leptotrichiaceae (Fusobacteria) in patients. Of the 
total genera detected in the salivary microbiome samples, 
seven genera were differentially abundant in controls and 
three in patients. The heatmap plot depicted the correla-
tions between patients and controls, and the abundance of 
selected genera represented in their microbiome samples 
(Figure 2). Differentially abundant species of Prevotella 
have been detected both in controls (Prevotella pallens, 
Prevotella shahii) and patients (Prevotella loescheii, Pre-
votella micans, Prevotella oris, Prevotella saccharolyti-
ca, Prevotella sp). Moreover, four species of genus Strep-
tococcus were found more abundant in patients (Strep-
tococcus sp, Streptococcus intermedius, Streptococcus 
mutans, Streptococcus tigurinus), according to the LEfSe 
method.

LEfSe analysis found ten differentially abundant gen-

Table 2: Total abundance and number of families for each phylum in patients and controls. Percentages are expressed in per-
cent of total reads.

Patients Controls
Phyla #Families Total Abundance (%) #Families Total Abundance (%)

Firmicutes 23 40.86 % 23 36.12 %

Bacteroidetes 12 27.69 % 10 31.96 %

Proteobacteria 40 20.28 % 37 22 %
Actinobacteria 11 4.83 % 10 1.86 %
Fusobacteria 2 4.22 % 2 5.21 %

Tenericutes 4 1.14 % 3 1.04 %

Spirochaetes 1 0.56 % 1 1.39 %

Chloroflexi 4 0.31 % 4 0.35 %

Verrucomicrobia 1 0.08 % 1 0.01 %

Synergistetes 2 0.02 % 1 0.06 %

Nitrospirae 1 0.002 % 1 0.003 %

Cyanobacteria 1 0.001 % 1 0.002 %

Planctomycetes 1 0.001 %

Deinococcus-Thermus 1 0.003 %
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era, which explained 44.9 % (Principal Coordinate-PC1) 
and 30.1 % (PC2) of the total variation. PCoA was ap-
plied for finding those taxa that were measured more in 
total variance and for pattern visualization. Genera more 
abundant in controls were clustered together. In contrast, 
genera Rothia, Lactobacillus, and Leptotrichia that were 
more abundant in patients, tend to be removed, contrib-
uted thus to the differentiation between controls and pa-
tients.

Exploration of a-diversity in patients with HCC
There were five patients with HCC, and we looked 

for bacterial taxonomic differences in their microbiome. 

Shannon index suggested lower diversity in patients with 
HCC but without statistically significant differences (p 
=0.26). LefSe analysis revealed discriminative taxa with 
the highest mean in patients without HCC; Gemella ge-
nus and Granulicatella elegans in phylum Firmicutes, 
and Haemophilus parainfluenzae in phylum Proteo-
bacteria. On the other hand, there were discriminative 
taxa with the highest mean in patients with HCC; gen-
era Lactococcus and Veillonella in phylum Firmicutes, 
and species Tobetsuensis, Paracaseia and Fermentum in 
genus Lactobacillus, Massilia namucuonensis in phylum 
Proteobacteria, and genus Treponema in phylum Spi-
rochaetes. Moreover, family Geodermatophilaceae and 
species Scardovia wiggsiae, Blastococcus saxobsidens, 
Corynebacterium argentoratense, and Prevotella bivia in 
family Actinobacteria. The Venn diagram performed at 
the genus level showed 44 common genera in patients 
(with or without HCC) and controls. Still, there were two 
unique genera in patients with HCC, 12 unique genera in 
patients without HCC, and 30 unique genera in controls 
(Figure 3).

Exploration of b-diversity
PCoA showing different clustering of patients’ and 

controls’ salivary microbiome is displayed in Figure 4. 
Moreover, the diverse composition of the bacteria popu-
lation between controls and patients was confirmed by 
the PERMANOVA test (p =0.008). That differences were 
not attributed to dispersions of the samples within the 
different groups (p =0.32). Species that contributed to 
the first two PCs with statistically significantly different 
abundance in the two groups are presented in Table 3.

Predictive Model Building
We also performed a sensitivity analysis to select the 

most representative genera able to classify controls and 
patients. We executed the Boruta wrapper algorithm and 
selected genera Rothia, Atopobium, Serratia, Butyrivibri, 

Figure 1: Depiction of the 53 differentially abundant taxa 
that contributed to differences between patients and con-
trols, according to the linear discriminant analysis effect size 
(LEfSe) analysis.

Figure 2: Heatmap indicating the genus-level changes in 
healthy controls and patients. The legends below the heat-
map represent each participant. The relative abundance of 
the bacteria in each genus is indicated by a gradient of color 
from light blue (low abundance) to black (high abundance).
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Table 3: Species with statistically different abundances among patients and controls. Principal coordinate analysis (PCoA) 
defined the dissimilarities between the two groups. Kruskal-Wallis test determined the statistical significance (p values <0.05).

OUT: operational taxonomic units.

Alloprevotella, Neisseria, and Mogibacterium as predic-
tors (Figure 5). Genera are reported according to their 
mean decrease accuracy. We also evaluated the importance 
of genera within the Random Forest Model based on Gini 
scores. The optimal Random Forest Model (with bootstrap 
samples, ntree =500 and mtry =2) resulted in OOB =0.22 
and in the area under the ROC curve =0.815 (Figure 6).

Discussion
In the present study, using next-generation sequenc-

ing analysis, we provide knowledge that supports the no-
tion of distinct salivary microbiome profiles in patients 
with stable decompensated cirrhosis. The salivary mi-

crobiome was thoroughly studied in a substantial deep 
level, according to that previously described in patients 
with cirrhosis15. We detected many different bacterial 
taxa, even rare ones, which allowed a thorough analysis 
of bacterial diversity in patients’ and controls’ samples. 

Decoding all available data from the analysis of sali-
vary samples, we found decreased diversity of the sali-
vary microbiome in decompensated patients compared to 
healthy controls. The salivary microbiome is considered 
less variable than other investigated body sites32; after 
that, changes among different populations could be of 
greater significance. Besides, Qin et al14 explained the 
role of the oral-gut-liver axis in the pathogenesis of cir-
rhosis, supporting the notion that altered gut microbiome 
arises by a massive invasion of the gut by oral bacterial 
species from the mouth and may play a key role in the 
progression of liver diseases and the development of de-
compensated events33.

In our cohort, the most abundant phyla were Fir-
micutes, Bacteroidetes, Proteobacteria, Fusobacteria, 

Figure 3: The Venn diagram depicts the number of genera 
common in all groups and the number of genera unique in 
each group; red for controls, yellow for patients without he-
patocellular carcinoma (HCC), blue for patients with HCC.

Figure 4: Principal Coordinate Analysis showing different 
clustering of patients and controls salivary microbiome.
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Actinobacteria, and Tenericutes. In general, salivary 
samples are dominated by phyla Firmicutes and Bacte-
roidetes, which are considered the best indicators of in-
traindividual similarity of the salivary flora32. In patients’ 
salivary samples, phylum Firmicutes was dominant, 
accounting for 40.9 % of total abundance, followed by 
Bacteroidetes (27.7 %). In controls, results showed a dif-
ferent trend; Firmicutes accounted for 36 % of total abun-
dance and Bacteroidetes 32 %. To date, Bacteroidetes in 
gut microbiota was found to decrease as the severity of 
liver disease progresses significantly9,34,35. 

Moreover, decreased relative abundances of Bacte-
roidetes have been detected in the oral microbiome of pa-
tients with chronic hepatitis B cirrhosis15 and HCC16. Ac-
cordingly, Firmicutes/Bacteroidetes ratio was calculated 
lower in patients than controls, indicative of salivary 
dysbiosis. Ling et al15 first reported a trend towards a de-

crease of the ratio in HBV-cirrhotic patients; their results 
were not significant compared to chronic HBV patients. 
Our results also failed to reach the level of significance. 
However, we confirmed the inversion of the Firmicutes/ 
Bacteroidetes ratio in our patients with decompensated 
cirrhosis and presented dysbiosis in patients with decom-
pensated cirrhosis of different etiology. Moreover, we de-
tected for the first time15,36 phylum Deinococcus-Thermus 
only in controls, while phylum Planctomycetes only in 
patients.

Interestingly, analysis on a deeper level discovered 
more significant differences among families in patients’ 
and controls’ salivary samples. The major family in pa-
tients’ salivary microbiome was Streptococcaceae, found 
in higher abundance than in controls (20 % vs. 11.4 %, 
p =0.29). Patients also had slightly higher Veillonella-
ceae abundance. Chen et al had already suggested that 
the prevalence of potentially pathogenic bacteria such as 
Streptococcaceae and Veillonellaceae might contribute to 
the interaction between gut microbiota and complications 
of cirrhosis9. These taxa of oral origin were found en-
riched in cirrhotic stool samples, indicating an invasion 
of the gut from the mouth that occurs in liver cirrhosis14, 
and are considered an important reason for gut dysbiosis 
in decompensated cirrhosis37,38. So, our findings enrich 
the existing knowledge over the role of the oral-gut-liver 
axis, proving for the first time changes of the salivary 
microbiome in patients with decompensated cirrhosis of 
different etiology.

Previous studies have associated higher relative abun-
dance of Prevotellaceae in fecal and salivary14 microbio-
ta samples of patients with hepatic encephalopathy than 
controls. Our salivary samples analysis confirms these 
findings in patients with any type of decompensation. 
Additionally, in our study, species of family Prevotel-

Figure 5: Boruta result plot for bacterial taxa in genus level. Blue boxplots correspond to minimal, average, and maximum Z 
scores; red and green boxplots represent Z scores of respectively rejected and confirmed attributes.

Figure 6: Receiver operating characteristic (ROC)  curve 
for the ability of the Boruta package to discriminate patients’ 
microbiome.
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laceae were among those that significantly contributed 
to the differentiation of patients’ and controls’ salivary 
microbiomes. Thus, these family members seem to play 
either beneficial or pathogenetic roles in the evolution 
of hepatic diseases39. We also found that patients had a 
significantly higher abundance of Micrococcaceae than 
controls (p =0.024), a finding related to systemic inflam-
mation in decompensated patients12,40. These interesting 
results summarize known changes previously found pri-
marily in the gut microbiome of patients with advanced 
liver disease35 and establish the significance of salivary 
microbiome in general, in decompensated cirrhosis with 
the advantage of a more accessible patient’s sample.

Notably, at the family level, we managed to detect 
significant differences in controls’ salivary microbiome, 
which presented higher abundances of families Clostri-
diaceae (p =0.004), Clostridiales Family XIII Incertae 
Sedis (p =0.0006), Oxalobacteraceae (p =0.024), and 
Sphingomonadaceae (p =0.001), compared to patients. 
This predominance of autochthonous taxa in controls is 
consistent with the previously known reduction in stools, 
sigmoid colon mucosa, serum, and saliva of patients 
with cirrhosis41. Principally, reduction of autochthonous 
to non-autochthonous taxa has been associated with the 
development of cirrhosis-related complications33. Simi-
lar results regarding autochthonous taxa have been de-
scribed in the saliva of cirrhotics with a previous history 
of hepatic encephalopathy12,13. Our study confirmed these 
findings in patients with stable disease, though with a his-
tory of any decompensation. 

Moreover, the a-diversity analysis showed that our 
patients had decreased salivary microbiome diversity, 
expressing low richness and evenness of detected taxa. 
Reduced bacterial diversity has been detected in salivary 
and gut microbiota in patients with advanced liver dis-
ease15,35,42 and is considered a marker of dysbiosis43. More 
specifically, the LEfSe method detected differentially 
abundant taxa that contributed to differences between pa-
tients and controls.

Further analysis in our patients with HCC presented 
lower bacterial diversity. Although our results were based 
on the analysis of only five salivary samples, LEfSe anal-
ysis revealed that there are discriminative taxa; 12 unique 
genera in patients without HCC, two in patients with 
HCC, and 30 unique genera in controls. Nevertheless, 
to date, knowledge is equivocal, as Lu et al16 suggested 
that microbiome diversity of tongue coat in patients with 
HCC is significantly increased. At the same time, Zeng et 
al44 presented lower diversity in fecal samples. 

Notably, our patients could be clearly separated ac-
cording to their tested salivary microbiome composition 
as determined using PCoA plotting. This shows that the 
patients’ salivary microbiome had pronounced differenc-
es compared to healthy controls, confirming that specific 
bacterial taxa may characterize decompensated cirrhosis’ 
salivary microbiome14.

For the first time, we applied the Boruta package28 
to deal with the available overlarge data obtained from 

salivary microbiome analysis. We detected a small fea-
ture set of bacterial taxa (possibly minimal) through 
this classification algorithm, allowing the best possible 
classification results for our patients. Although the ROC 
curve [area under the curve (AUC): 0.815] suggested 
this algorithm is an excellent discriminative model, there 
were patients classified as controls (false negatives), and 
thus, we cannot rely solely on this model for separating 
patients. The detected genera enhance the results of our 
previous analysis and imply the utility of such classifica-
tion algorithms in decompensated cirrhosis using salivary 
microbiome.

Our study has limitations, as it is a single-center study 
that included a small number of patients and controls, so 
larger samples would allow reaching more robust and 
significant conclusions. We acknowledge that small co-
horts may lead to statistical errors type II, meaning be 
underpowered to detect existing differences. In addition, 
we analyzed only salivary samples and no fecal or serum 
samples, in order to look for associations and functional 
implications. However, the oral cavity is more accessible 
than the gut, and salivary sampling is easier than fecal. 
Accordingly, it seems preferable to estimate salivary as 
a reflection of the gut microbiome based on the notion 
of bacteria translocation from the oral cavity to the gut14. 
Future studies will clarify the validity and utility of our 
findings in stable decompensated cirrhosis. In an ongoing 
study, it would be worthy of recording patients’ outcomes 
and whether they develop further complications, too. 

In conclusion, our study provides novel data to sup-
port that patients with decompensated cirrhosis have a 
distinct salivary microbiome, supposing pathogenic im-
plications. There were prominent differences in patients 
compared to controls, adding to the existing knowledge 
for cirrhotic saliva. Our specificity was that we analyzed 
all patients regardless of previous history and stage of 
decompensation cirrhosis. Patients presented salivary 
microbiome dysbiosis characterized by decreased Fir-
micutes/Bacteroidetes ratio and bacterial diversity over-
all. Specific bacterial features were searched to distin-
guish patients, and the Boruta algorithm was applied for 
the first time in such samples and provided innovative 
data. Accordingly, dysbiosis exists in the salivary micro-
biome of patients with stable decompensated cirrhosis, 
and further studies will clarify its therapeutic and prog-
nostic perspectives.
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