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Abstract
Background: Glioblastoma multiforme is the most aggressive brain tumor with poor prognosis and an average survival 
of 1-2 years. Animal models that simulate the features of human glioma are the key to newer agents or therapeutic strate-
gies. In order to establish such models, the C6 glioma cell line has been mostly used in neuro-oncology research.
Methods: In this narrative review, we systematically reviewed the international literature in order to retrieve and present 
the most important biological and molecular features of C6 cell line. 
Results: Even though many cell lines have been developed, each cell line presents with slight differences from human 
glioma behavior. C6 cancer cell line is a rat glioma cell line, which can simulate in overall the high growth rate, the high 
vascularization, and the highly infiltrative character of glioblastoma multiforme. 
Conclusions: Most of the C6 glioma research has been focused on testing a wide diversity of agents for their tumoricidal 
activity. C6 cell line is considered to be a safe and popular glioma model in the literature, providing a good simulation 
of glioblastoma multiforme. HIPPOKRATIA 2018, 22(3): 105-112.
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Introduction
Gliomas are tumors that derive from glial cells and 

are the most common tumors of the central nervous sys-
tem (CNS). The classification of CNS tumors has recent-
ly been updated in the 2016 World Health Organization 
(WHO) classification, which is based on the type of the 
primary cell along with histological and molecular char-
acteristics1. The most aggressive glioma tumor is glio-
blastoma multiforme (GBM), which has a poor prognosis 
with an average survival of 1-2 years depending on the 
isocitrate dehydrogenase (IDH) status1. Glioblastomas 
exhibit high growth rate, high vascularization, and are 
considered to be highly infiltrative. Unfortunately, in the 
last years, there has been only a few therapeutic advanc-
es on gliomas2. Even though researchers have proposed 
several molecular pathways and a variety of therapeutic 
targets, there was no success in the clinical trials3,4. This 
failure points out that as existing molecular knowledge 
for glioma tumors advances, it becomes clearer that in 
order to study innovative therapies, appropriate and pre-
dictive animal glioma models are of great importance. 
Animal glioma models are generated from glioma cell 
lines that are tumorigenic to laboratory animals and can 
simulate the fundamental biological properties of human 

gliomas. The key to a successive glioma model is the 
proper choice of a cancer cell line. 

Methods
This review aims to present an update on the C6 glio-
ma cell line and discuss newer therapeutic applications 
and effects using C6 glioma rat model. Therefore, we 
searched the Medline (PubMed) for C6 rat glioma model 
articles in English related to therapeutic applications in 
terms of tumor growth and proliferation, invasiveness, 
migration, immunogenicity, angiogenesis, and genetic 
profile published from 2000 to 2018. The following key-
words were used in advanced search: (glioma models OR 
cell lines) AND rat AND C6 and the results were sorted 
by the most recent. We proceeded in discussing the ge-
netic, morphologic, and angiogenic profile of C6 cell 
line, presenting newer aspects of its profile and the most 
recent therapeutic applications. Finally, we investigated 
the characteristics of C6 cell line that constitute it as the 
best glioma model for studying GBM. To answer these 
topics, a narrative but comprehensive review with sys-
tematic intent was conducted and is presented. The flow 
chart of the recovered and analyzed studies from PubMed 
is shown in Figure 1.
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Results
Genetics

C6 cell line was developed in adult Wistar-Furth 
rats in the late 1960s after the rats were repetitively ex-
posed to N-Nitroso-N-methylurea5. This glioma cell line 
is composed of pleomorphic cells with variably shaped 
nuclei. Genetically, the cells are reported to have a wild 
type of p53 gene, an increase in the expression of the 
Rb gene and mutant p16/Cdkn2a/Ink4a locus but with-
out the expression of p16 and p19ARF mRNAs6. They 
also overexpress the same genes that are expressed in 
human gliomas: the PDGFβ, insulin-like growth factor 
(IGF)-1, epidermal growth factor receptor (EGFR), and 
Erb3/Her3 precursor proteins7,8. Furthermore, there is a 
reduced expression of IGF-2, FGF-9, and FGF-10, while 
there is no change in the expression of MMP-7 gene. As 
human gliomas exhibit increased activity of genes of Ras 
pathway9, C6 cells also exhibit upregulation of Ras path-
way. Nevertheless, increased expression of Ras guanine 
triphosphate activator protein keeps the Ras pathway un-
der control. In addition, increased expression of TGFα 
precursor was also reported10. 

Mutations in genes encoding IDH1 and IDH2 in glio-
mas have been linked to patient’s prognosis11, but they 
are not detected in C6 cells12. However, researchers have 
proved that artificial mutagenesis of IDH2 in C6 cells in-
creases their sensitivity to chemotherapy and promotes 
cell migration and tumor growth12,13. IDH2 mutated C6 
cells could be a new promising proliferation and migra-
tion glioma model for the development of new agents14,15. 
Cell adhesion and signal transduction are essential fea-
tures of tumors, regulated by cell surface antigens. CD9 
is a cell surface antigen that is typically expressed in 
the myelin sheath of nerves. Its increased expression is 
found in high-grade gliomas, and it has been proposed 
as a marker for the degree of glioma malignancy. In C6 
glioma cell line, CD9 has a significant increase10. Final-
ly, it should be noted that there is a sub-clone of C6 cell 
line that expresses β-galactosidase marker protein, which 
acts as a tumor antigen. Even though this marker protein 
can help at in vivo immunohistochemical analysis of C6-
derived tumors, it must be taken into consideration that 
immunization of rats against the gene of β-galactosidase 
can protect against tumor growth16.

Morphology and mechanisms of development
C6 cells are spindle-like cells that simulate human 

GBM when they are injected in the brain of neonatal 
rats17,18. Glioma models have been developed in Wistar 
rats18,19 and exhibit the same histological features as hu-
man GBM, such as foci of tumor necrosis, nuclear poly-
morphism and high mitotic index17,20,21. The main his-
tological differences are that C6 does not express glial 
fibrillary acidic protein (GFAP), whereas vimentin is 
variably expressed22. The tumor doubling times can be 
evaluated by experimental volume data after fitting in 
a modified Gompertz function20. The brain tumor C6 
model has been shown to occur as early as 5-7 days post-
implantation after magnetic resonance imaging (MRI) 
tumor detection and growth monitoring with volumetric 
analysis23-25. Even though immune microenvironment of 
C6 gliomas resembles that of a human GBM21, the cell 
line is capable of producing an immune response in Wis-
tar and BDX (inbred rat strain X) rats26, and therefore, it 
cannot be used for assessing immunotherapy. However, 
several studies report significant tumor growth rang-
ing from 70 % to 91 % after the implantation of C6 in 
Wistar rats19,27. Initial assessments on C6 implantation 
in Long-Evans and Sprague-Dawley rats do not support 
simulation of a human GBM model. In these animals, C6 
formulates in most cases a rounded and well-demarcated 
brain tumor without evidence of parenchymal invasion 
resembling more in brain metastasis than GBM28,29. In 
general, C6 glioma model has been used to study sev-
eral biological features of brain tumors, such as tumor 
growth, tumor invasion and migration, angiogenesis, 
growth factor production and regulation, and blood-brain 
barrier disruption30-34. 

C6 glioma cells invade and migrate in cerebral cortex 
post-implantation by attaching to the endothelial base-

Figure 1: Flow chart of the recovered and analyzed studies 
in PubMed regarding articles involving therapeutic applica-
tions in terms of tumor growth, proliferation, invasiveness, 
migration, immunogenicity, angiogenesis, and genetic pro-
file, focusing on literature of the period 2000-2018.
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ment membrane18,35. This route of migration resembles 
the human xenografted cell lines in a rat brain, and it sim-
ulates the migration of malignant gliomas in humans36. 
Tumor invasion is achieved through the degradation of 
the basement membrane as well as of the extracellular 
matrix. Tumors can be developed due to the invasion of a 
single C6 cell into the surrounding brain tissue, depend-
ing mainly on metalloprotease activity, but not on cell 
proliferation itself37,38. Metalloprotease activity includes 
factors that comprise a family of endopeptidases that are 
metal ion-dependent. They are responsible for the deg-
radation process but are also needed for angiogenesis. 
Orthotopic C6 brain gliomas have been found to exhibit 
high amounts of matrix metalloprotease (MMP) proM-
MP2 and its activated form, which is usually found only 
in tumoral brain tissue39. Activated MMP2 is detected as 
part of collagenase activity and the basement membrane 
degradation process40. The matrix metalloprotease activ-
ity of C6 cells can transform CNS myelin into a substrate 
for cell migration41. Myelin degradation enables C6 cells 
to invade and migrate through white matter; this process 
is attributed to membrane type 1 MMP (MT1-MMP), 
found on the cytoplasmic membrane of the C6 cells42. 
Furthermore, other molecules, which are overexpressed 
in C6 cells, play an essential role in the invasion and par-
ticularly in the adhesion of the C6 cells at the surrounding 
tissue. These include the intercellular adhesion molecule 
(ICAM) and the cell surface antigen CD9, which is usu-
ally found in the myelin sheaths43-45.

Angiogenesis in C6 derived tumors
The development of the C6 tumor is also associated 

with the vascular status of the C6-derived gliomas. The 
lack of oxygen in the center of the tumor is an essential 
factor of neovascularization. C6 cells secrete several an-
giogenic factors, such as vascular endothelial growth fac-
tor (VEGF) and basic fibroblast growth factor (bFGF)46,47, 
that contribute to tumor growth via tyrosine kinase re-
ceptors and MMPs, respectively48,49. C6 implanted cells 
present with several growth phases related to the vascular 
status of the tumor. Therefore, there is the lag phase, the 
proliferative phase, and the exponential phase of tumor 
growth, which is associated with the vascularization pro-
cess50. The latter includes three stages: the avascular, the 
early vascular, and the late vascular stage. During the 
vascularization process, MRI and pathology study of an 
orthotopic C6 glioma model in Sprague-Dawley rats re-
vealed four patterns of neovascularization. Two of them 
are found inside the tumor and include: i) splitting angio-
genesis, also known as intussusception angiogenesis, in 
which the extent of the capillary wall inside the lumen 
splits the single vessel in two, and ii) sprouting angiogen-
esis, in which activated endothelial cells of the existing 
vessels release proteases that degrade the basement mem-
brane and allow the endothelial cells to escape their site 
and proliferate into the surrounding matrix in a tandem 
way.  The third pattern refers to vascular co-option found 
in the tumor margin, and the last is vascular mimicry, 

which is recognized in the surrounding necrotic area51.
Discussion 

The ideal glioma model should be similar to human 
GBM in terms of morphological characteristics, its inva-
sive pattern and ability, its vascular behavior, and its im-
mune microenvironment. There is a plethora of cell lines 
that simulate human GBM and are used in research. The 
most commonly used include human-derived cell lines 
such as U251 and U87, murine cell line GL261, and rat 
cell lines 9L/LacZ, F98, RG2, CNS-1, and C6. U251 and 
U87 are xenograft models that can be developed only in 
immunocompromised rodents, whereas the rest cell lines 
can be developed in immunocompetent syngeneic mod-
els. This restriction constitutes human-derived lines inad-
equate for a tumor-immune microenvironment study. All 
models exhibit similar morphological characteristics ex-
cept 9L/LacZ and F98, which resemble gliosarcoma and 
anaplastic glioma respectively. All models share similar 
to GBM nuclear pleomorphism and high mitotic index, 
while F98 and 9L/LacZ present a low percentage of tumor 
necrotic foci and C6 moderate. The most aggressive and 
invasive models are RG2, F98, and 9L/LacZ, whereas C6, 
GL261, and CNS-1 have a moderate invasive ability and 
poor invasiveness is a feature of human cell lines U87 and 
U25152. Each glioma model is able to create its own vascu-
lar network with vessels of different length and diameter. 
All models exhibit high neovascularization but either by 
neovascularization or recruitment of existent vasculature. 
U87 has been shown to exhibit profuse neovascularization 
and has been widely used to study GBM angiogenesis53. 
Half of the cell lines mentioned above can cause an im-
mune response of the host. The most vigorous immune 
response is reported in 9L/LacZ, whereas C6, U87, U251 
cause a moderate response. Non-immunogenic cell lines 
are considered to be GL261, CNS-1, F98, and RG2. How-
ever, when a study of the tumor-immune microenviron-
ment is of need, C6 is well studied and resembles human 
GBM immune infiltrates21. A series of markers and most 
common genetic mutations complete the profiling of the 
cell lines. S100 protein is expressed in all cell lines except 
U87, F98, and RG2, whereas GFAP is expressed in U251, 
GL261, CNS-1, and F98. A wild type p53 can be found in 
C6, U87, F98, and RG2, while EGFR overexpression is 
a common feature in all cell lines except U87 and RG2. 
A summary of the most important characteristics of the 
above cell lines is presented in Table 1.

The C6 rat glioma model is one of the commonest 
experimental models used in neuro-oncology in order 
to study the growth and the invasion of high-grade glio-
mas. A recent MRI and magnetic resonance angiography 
(MRA) in vivo study has reported that C6 resembles hu-
man GBM better than other rodent glioma models20,54. 
The most common host of C6 cell line for an in vivo 
study is immunocompetent Wistar rats, but other species 
such as Sprague-Dawley and Long-Evans have also been 
used. However, Long-Evans rats have not been exten-
sively used in glioma models, and studies using this spe-
cies are very scarce in the literature55,56. On the contrary, 
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although it has been primarily reported that implantation 
of C6 in Sprague-Dawley rats does not produce a similar 
invasion pattern as human GBM28,29, recent studies state 
otherwise and have used this model to investigate tumor 
growth or the extent of resection57,58. C6 glioma model 
has been used to test variable treatment modalities, in-
cluding newer and more effective drugs against glioma, 
radiation therapy, photodynamic therapy, or even gene 
therapy59-62. Despite the fact that it has been extensively 
used, allogeneic proteins of the major histocompatibil-
ity complex (MHC) found in the C6-derived tumors can 
cause an immune response. These proteins are up-regu-
lated in the C6 glioma model and simulate a therapeutic 
response63. The immunological reaction is present in both 
intracranial C6 glioma models and subcutaneous flank 
C6 models of Wistar rats26. Even though the cell implan-
tation protocol affects tumor formation, allogenicity is 
the main problem for low rates of tumor intake. Never-
theless, it has been documented that C6 presents a similar 
composition of the immune infiltrates to human GBM. 
The invasion and immunosuppression-related genes in 
C6 gliomas produce similar immune evasion pattern as 
in human GBM. Therefore, C6 glioma model is consid-
ered to be a good model of an immunocompetent host 
for in vivo studies21 and has been widely used in research 
studying tumor growth and invasion as well as anti-tumor 
drug effectiveness (Table 2).

C6 glioma model has been proved to express a di-
versity of proteins, growth factors and/or their receptors, 
which constitute targets for tumor research. Among most 

popular targets are angiogenic factors such as VEGF and 
bFGF and its receptors vascular endothelial growth fac-
tor receptor (VEGFR) and fibroblast growth factor re-
ceptor (FGFR) respectively80,81. Other factors targeted are 
platelet-derived growth factor and its receptors platelet-
derived growth factor receptor (PDGFR)82, that regulate 
cell growth and division, and factors that stimulate cell 
growth and differentiation such as epidermal growth fac-
tor (EGF) and its receptor EGFR83. More complexed tar-
gets are IGF and its receptors84 that are responsible for 
cell proliferation and inhibition of cell death. 

Tumor growth inhibition remains the primary target 
of C6 glioma model research. Several popular drugs such 
as ibuprofen, dopamine, and aspirin have been tested on 
such models. The first two have succeeded in that direc-
tion64,74, whilst aspirin reduced the glioma invasion85. C6 
glioma models have also been a preferred model for ex-
perimental therapies with nanoparticles. Transferrin (Tf)-
modified polyethylene glycol-polylactic acid (PEG-PLA) 
nanoparticles conjugated with resveratrol as well resvera-
trol-loaded lipid-core nanocapsules have been shown to 
reduce tumor growth67,68. Furthermore, nanoparticles with 
a fusion protein derived from factor VII facilitated anti-
glioma delivery of paclitaxel. In that way, they targeted 
both neovascular and glioma cells leading to cell apoptosis 
and tumor necrosis70. Combined therapeutic approaches 
have also been tested against C6 glioma models. Hyper-
baric oxygen, as well as photodynamic therapy, have been 
used against glioma, in combination with temozolomide, 
which is an approved by The Food and Drug Administra-

Table 1: A comparative profile of the most important features of the commonest used in research cell lines.
Profile C6 U251 U87 GL261 9L/LacZ CNS-1 F98 RG2
Invasiveness moderate low low moderate high moderate high high

Nuclear pleomorphism + + + + + + + +

High mitotic index + + + + + + + +

Foci of tumour necrosis moderate high high high low moderate low high

Angiogenic high high high high high moderate high moderate

Immunogenic + + + - + - - -

GFAP - + - + - + + -

S100 + + - + + + - -

Vimentin - + + variable N/A + + +

Syngeneic model existance + - - + + + + +

p14ARF mutation - + + + - N/A N/A N/A

p16 mutation + + + + - N/A + +

PTEN mutation - + + + - N/A N/A N/A

p53 mutation - + - + + N/A - -

kRAS mutation N/A + + + N/A N/A + +

EGFR overexpression + + - + + N/A + -

GFAP: glial fibrillary acidic protein, PTEN: phosphatase and tensin homolog, EGFR: epidermal growth factor receptor, +: presence, -: absence, 
N/A: not available.
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Table 2: Most prominent therapeutic applications and effects using C6 glioma model. 

Therapy In vitro/
vivo

Experimental design Effects Reference
Ibuprofen In vivo C6/LacZ rat glioma cells into the Wistar 

rats brain – two treatment groups
Growth inhibition Dagestan et al. 201264

Hyperbaric oxygen (HBO) and 
temozolomide (TMZ)

In vivo stereotactic injection of C6/LacZ 
rat glioma cells into the Wistar rats brain 
– treatment with HBO, TMZ and a com-
bination of them. Intra-/peri-tumoural 
vessels, microendothelial proliferations, 
immunohistochemistry and necrotic area, 
were evaluated.

Growth inhibition Dagistan et al. 201265

Serine protease urokinase plas-
minogen activator (uPA), and 
matrix metalloproteases (MMP-2 
/ MMP-9)

In vivo/in 
vitro

Determination of MMP-2, MMP-9, 
uPAR and uPA in the tumour core and of 
infiltration zone in vitro C6 glioma cells 
and in an in vivo orthotopic C6 glioma 
model in Sprague Dawley rats

Growth and invasion 
inhibition

Schuler  et al. 201266

Resveratrol-loaded lipid-core 
nanocapsules

In vitro/in 
vivo

RSV-LNC (5 mg/kg/day, i.p.) for 10 
days in rats with orthotopic C6 tumours

Growth inhibition Figueiró et al. 201367

Transferrin (Tf)-modified poly 
ethyleneglycol-poly lactic acid 
(PEG-PLA) nanoparticles conju-
gated with resveratrol

In vivo/in 
vitro

Tf-PEG-PLA-RSV administered in vitro 
and in vivo in C6 orthotopic glioma 
model of Wistar rats

Growth inhibition Guo et al. 201368

Diruthenium-Ibuprofen com-
pound

In vivo The compound was tested in the rat C6 
orthotopic glioma model in vivo

Growth inhibition Benadiba et al. 201469

EGFP-EGF1-conjugated 
nanoparticles (ENPs)

In vitro and 
in vivo

Balb/c mice –nanoparticles with a fusion 
protein derived from factor VII facilitate 
anti-glioma delivery of paclitaxel by tar-
geting both neovascular and glioma cells

cell apoptosis and 
tumour necrosis

Zhang et al. 201470

diruthenium-GLA complex 
(Ru2GLA)

In vivo/in 
vitro

Administration of Ru2GLA in an ortho-
topic C6 glioma model in Wistar rats

C6 cell proliferation in 
vivo and the changes 
in tumour morphology

Miyake et al. 201471

Photodynamic therapy (PDT) 
and temozolomide

In vivo The expression of P-glycoprotein (P-gp) 
in endothelial cells was investigated after 
treating glioma bearing Wistar rats with te-
mozolomide, PDT or a combination of them

Growth inhibition Zhang et al. 201472

Resveratrol In vivo / in 
vitro

Oral administration of resveratrol in 
orthotopic glioma model of Wistar rats. 
The expression of EGFR, GFAP, PCNA, 
MMP-9, NF-κB, COX-2 and VEGF was 
investigated

Growth inhibition Wang et al. 201573

Dopamine In vivo reprogramming M2-polarized macro-
phages

Growth inhibition and 
vascular normalization

Qin et al. 201574

Dimethylaminomicheliolide 
(DMAMCL)

In vivo/in 
vitro

Oral administration of DMAMCL in a 
subcutaneous glioma model in Wistar 
rats

Growth inhibition An et al. 201575

Lapachol In vivo / in 
vitro

Intragastric administration of lapachol 
in Wistar rats with C6 orthotopic glioma 
model. Proliferation, apoptosis, DNA 
damage, topoisomerase I (TOP I) and 
topoisomerase II (TOP II) activities were 
detected

Growth inhibition, 
possibly through 
inhibiting TOP I and 
TOP II expression

Xu et al. 201676

Anti-vascular endothelial growth 
factor receptor-1 monoclonal 
antibody

In vivo Influence of D16F7 on glioma growth 
and angiogenesis in vivo using C6 gli-
oma cells transfected with the human 
VEGFR-1

Growth inhibition 
and anti-angiogenetic 
effect

Atzori et al. 201777

Flavonoid FLA-16 In vivo / in 
vitro

Intraperitoneal administration of FLA-16 
in an intracranial and subcutaneous C6 
glioma model in Wistar rats or BALB/c 
nude

Growth inhibition 
through CYP4A in-
hibition by flavonoid 
FLA-16. Normaliza-
tion of tumour vascu-
lature through down-
regulation of TAMs 
and EPCs-derived 
VEGF and TGF-b via 
PI3K/Akt signaling

Wang et al. 201778

Lactoferrin modified daunorubi-
cin plus honokiol liposomes

In vivo / in 
vitro

Action mechanism studies were per-
formed on BBB model, brain glioma 
cells and glioma-bearing mice

Growth and invasion 
inhibition

Liu et al. 201779

HBO: Hyperbaric oxygen, TMZ: temozolomide, uPA: urokinase plasminogen activator, MMP: matrix metalloproteases, RSV-LNC: resveratrol-loaded lipid-core nanocapsules, 
Tf: transferrin, PEG-PLA: modified polyethylene glycol-polylactic acid, ENPs: EGFP-EGF1, Ru2GLA: diruthenium- gamma-linolenic acid complex, PDT: photodynamic 
therapy, P-gp: P-glycoprotein, GFAP: glial fibrillary acidic protein, PCNA: proliferating cell nuclear antigen, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B 
cells, COX-2: cyclooxygenase-2, VEGF: vascular endothelial growth factor, VEGFR-1: vascular endothelial growth factor receptor-1, DMAMCL: dimethylaminomicheliolide, 
TOP: topoisomerase, FLA-16: flavonoid-16, CYP4A: cytochromes P450 family, TAMs: tumor-associated macrophages, EPCs: endothelial progenitor cells, TGF-b: 
transforming growth factor beta, PI3K/Akt signaling: phosphatidylinositol-4,5-bisphosphate 3-kinase/ protein kinase B signaling, BBB: blood-brain barrier.
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tion (FDA) chemotherapeutic agent for glioblastoma65,72. 
These combinations have shown to augment growth inhi-
bition of gliomas. Among newer therapeutic techniques, 
clinical research offers gene therapy. C6 glioma cells have 
been used to explore the limits of gene therapy in glioblas-
tomas. An example of gene therapy was the introduction 
of INF-γ gene in C6 cells by retroviral delivery, which led 
to tumor growth inhibition by B- and T-cells activation and 
by inhibition of angiogenesis86.  

Another promising field of research is that of chemo-
kines and their receptors that are involved in proliferation 
and migration of glial precursor cells. Chemokines are also 
involved in tumor metastasis, tumor growth and progres-
sion87,88. More specifically, tumor research has shown great 
interest in the chemokine CXCL12 and the axis CXCL12-
CXCR789. CXCL12 chemokine is found in necrotic areas, 
as well as in areas of neo-angiogenesis, and are responsi-
ble for the proliferation of glioblastoma progenitor cells90. 
CXCR7 can be found in capillaries of the neo-angioge-
netic tumor tissue of human glioblastoma91. Furthermore, 
CXCR7 is localized in the adult rat brain and particularly 
in astrocytes, and Schwann cells92. It is noteworthy that the 
axis CXCL12-CXCR7 has been proven not only to medi-
ate migration but also to reduce apoptosis induced by the 
chemotherapeutic agent temozolomide91,93. 

Additionally, recent studies have highlighted the po-
tential role of activated macrophages and microglia in 
glioma development. The endothelial monocyte-activat-
ed polypeptide II (EMAPII) is a cytokine expressed by 
macrophages and microglia. It plays a role against angio-
genesis and acts as a pro-inflammatory cytokine94. It is 
also responsible for the activation and infiltration of mac-
rophages and induces endothelial apoptosis. ED1 is a ly-
sosomal protein found both in macrophages, who under-
went phagocytosis and microglia. Another marker which 
is observed in several CNS pathologies such as ischemia 
and Wallerian degeneration is CD895,96. The early accu-
mulation of the aforementioned markers was found in 
C6 rat glioma models97, and this could prove a promising 
research field for studying either the development of the 
glioma or test new tumoricidal agents in gliomas.

Conclusions
C6 cell line is quite popular within glioma research. 

It has been widely used in order to establish a rat glioma 
model, which simulates human glioblastoma. Even though 
literature supports low tumor development rates in rats and 
mice due to C6 allogenicity, literature is also very rich re-
garding in vivo studies, as this review demonstrated. C6 
cell line gives the advantage of a syngeneic model without 
the need of immunocompromised rodents in comparison 
to xenograft models. It can produce a highly angiogenic, 
invasive glioma model with distinct peritumoral environ-
ment altering pre-existing vasculature for its needs and 
with many of the human GBM morphological character-
istics. It can be developed as an orthotopic model in rats 
which offers easier MRI study investigation in comparison 
to murine models due to the size of the animal. MRI and 

MRA studies have shown the superiority of C6 cell line 
in GBM similarity in comparison to other rodent models. 
Furthermore, its expressed markers facilitate an immuno-
histochemical investigation as in other rat cell lines, but 
its genetic profile resembles better human GBM than the 
rest rat glioma models. Finally, C6 is preferred in tumor-
immune microenvironment studies since it employs simi-
lar immune infiltrates and evasion strategies as does hu-
man GBM. Therefore, C6 cell line offers a wide variety of 
therapeutic studies including growth and invasive pattern 
studies, angiogenic and immune models, and a plethora of 
molecular and genetic targets for newer pharmacological 
agents. Most of the C6 glioma research has been focused 
on testing a wide diversity of agents for their tumoricidal 
activity. Moreover, C6 rat glioma models have also been 
extensively used to analyze glioma characteristics such as 
development, invasion, migration, and angiogenesis. In 
general, the C6 rat glioma model is thought to be a quite 
safe model, and it has been widely used throughout the 
timeline. Nevertheless, a researcher should not forget to 
take into consideration the pros and cons of every cell line, 
in accordance with the appropriate model to be studied.
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