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Abstract: 
Background: Computer-aided detection in the setting of trauma presents unique challenges due to variations in shape 
and attenuation of the injured organs based on the timing and severity of the injury.  We developed and validated an 
automated computer-aided diagnosis algorithm to detect splenic lesions such as laceration, contusion, subcapsular he-
matoma, perisplenic hematoma, and active extravasation using computed tomography (CT) images in patients sustaining 
blunt or penetrating abdominal trauma. 
Methods: We categorized the splenic pathologies into three groups: contusion/laceration, hematoma, and active ex-
travasation. We first analyzed the spleen and perisplenic region by estimating the mean value and standard deviation of 
the spleen. We determined adaptive threshold values based on the histogram of the area and detected the lesions after 
morphological operations and volumetric comparisons. 
Results: The overall performance of the three computer-aided diagnosis (CAD) algorithms is an accuracy of 0.80, sen-
sitivity of 0.95, specificity of 0.67, and a diagnostic odds ratio (DOR) of 40 with a 95 % confidence interval (CI): 14 to 
117. The CAD of perisplenic hematoma had the highest diagnosis rates with an accuracy of 0.90, a sensitivity of 0.95,  
specificity of 0.80, and DOR of 76 with a 95 % CI:  13 to 442. 
Conclusions: We developed a new algorithm to detect post-traumatic splenic lesions automatically and with high ac-
curacy. Our method could potentially lead to the automated diagnosis of all traumatic abdominal pathologies.
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Introduction
Trauma is the most frequent cause of mortality and 

morbidity1,2 among all age groups and is the leading cause 
of death before the age of 403. Trauma poses a crucial 
universal health problem for all socioeconomic classes4,5. 
The abdomen ranks as the third most common site of in-
jury following trauma.  The spleen is the most commonly 
injured solid organ.  Surgical exploration rate following 
abdominal trauma is 25 %6,7. The death rate following 
blunt or penetrating trauma varies between seven and ten 
per cent8,9. In a study of Hildebrand, severe intraperito-
neal bleeding due to multi-organ trauma was found to be 
the most common reason for early deaths. They reported 
a mortality rate of 42 % due to blunt abdominal injury10. 
Although various diagnostic methods are used to detect 
intraperitoneal traumatic lesions, computed tomography 
(CT) is a more specific and sensitive diagnostic tool in 

trauma patients compared to conventional radiography or 
ultrasonography11-15. 

Computer-aided artificial intelligence systems have 
been evolving from experimental to clinical applications 
and implementations in radiology over the last decade. 
Especially rapidly improving the performance of the 
deep learning techniques will make them powerful tools 
for segmentation16,17, classification18,19, lesion/nodule 
detection20,21, and computer-aided diagnosis (CAD)22,23 
systems. By taking advantage of these innovations, ra-
diologists can increase diagnostic accuracy in their inter-
pretations with fewer false positives and identify lesion/
nodule patterns that may easily evade from human eyes. 
Also, these computer-aided systems can aid the automat-
ed detection of repetitive tasks such as nodule detection. 

The CAD has a powerful potential to streamline the 
radiologic diagnosis in the emergency department, where 
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a rapid and accurate diagnosis can be lifesaving. In busy 
emergency departments with high patient volume, issues 
with timely availability of the radiologist, and turnaround 
time for the radiologic diagnosis may significantly affect 
patient outcome.  In our previous work, the only study in 
the literature using traumatized spleens, we introduced a 
new method for automated computer-aided segmentation 
of the injured spleen due to blunt or penetrating abdomi-
nal trauma with high accuracy24. The proposed method 
efficiently overcame challenges such as shape and den-
sity differences of the spleen on CT images.

We aim to develop and validate a robust method de-
tecting traumatic splenic lesions such as laceration, con-
tusion, perisplenic fluid, and active extravasation.

Materials and Methods
Study population and assessment of the CT images 

Institutional Review Board (IRB) of the University 
of Ankara Numune Training and Research Hospital (IRB 
No E-16-1143/2016, 14/12/2016) approved this study 
and waived the requirement for informed consent due to 
the retrospective study design. We collected data of thir-
ty-six patients presenting to the emergency department 
sustaining abdominal trauma between January 2017 and 
April 2018. We excluded four subjects younger than 18 
years of age (motor vehicle accident) and two with image 
motion artifacts from this study. Our study group con-
sisted of thirty subjects sustaining blunt and penetrating 
abdominal trauma who underwent abdominal CT scans.

We used a standardized CT scanning protocol for pa-
tients with abdominal trauma. CT scans were acquired 
when the subjects were hemodynamically stable. The CT 
studies were performed on Toshiba Aquilion 64  mul-
tidetector CT  scanner (Toshiba America Medical Sys-
tems, Tustin, CA, USA). One hundred mL of intravenous 
contrast was administered using a power injector (Ulrich 
GmbH & Co., Ulm, Germany) in the arterial followed 
by portal venous phases using 3 mm slice thickness. Or-
gan Injury Scale standardized by the American Associa-
tion for the Surgery of Trauma (1994) was used to grade 
splenic injury using CT.

Three radiologists with over ten years of experience 
(Cuce F, Ergin T, Koksal M) had access to the patients’ 
history and status on initial admission but were blinded 
to the surgical report, follow up and outcome details 
as well as official CT report. They manually drew the 
splenic contours independently and made the final seg-
mentation decision in agreement. They also detected and 
documented the associated pathologic findings, first indi-
vidually and then in agreement. Inter-observer variability 
of manual segmentation of splenic contours and splenic 
pathologies were  0.15 % and 0.23 %, respectively.

Method of detection lesions with CAD
We categorized the traumatic splenic pathologies into 

three groups: contusion/laceration, hematoma, and active 
extravasation. We used the portal venous phase to detect 
contusion/laceration and hematoma while we used the ar-

terial phase to assess active extravasations. Segmentation 
of the spleen is the first step before the comprehensive 
detection of pathology. We developed a segmentation 
method for injured spleens in24, as the first step of this 
study with the performance of volume overlap of 89.6 
% ± 9.73, dice coefficient of 93.6 % ± 2.97, precision of 
90.13 % ± 4.32, and sensitivity of 97.63 % ± 2.21; which 
was determined to be successful and sufficient to perform 
CAD of splenic pathologies. 

Detection of contusion/laceration
We used the binary images of the segmented spleen 

and the CT volume in the portal venous phase as the in-
puts of the system.  While investigating the density dis-
tributions of the spleen and the perisplenic region, we ob-
served that the density distributions exhibit two hills and 
the right hills represent the splenic parenchyma (Figure 
1). We used the right half of the right hill to calculate the 
mean and standard deviation of splenic parenchyma den-
sity distribution. The peak of the hill indicates the mean 
value, while one-third of the right tail yields the standard 
deviation. The endpoint of the tail is determined to be the 
last point along the right tail corresponding to one-tenth 
of the peak value. We determined three threshold values 
and four labels based on the mean value and standard de-
viation. The pseudo code of the proposed thresholding 
method is as follows:

thr1 =0
thr2 =mean-1.5 ´ std
if thr2 <55
thr2 =55
end
thr3 =mean+2 ´ std

Figure 1: Determination of adaptive threshold levels from the 
histogram of the spleen and perisplenic region. The peak of the 
green hill, 126 Hounsfield unit (HU), depicts the mean value 
and one-third of the right tail indicates the standard deviation 
(std).  Threshold values were determined as threshold 1 =0, 
threshold 2 = mean-1.5 x std, threshold 3 = mean+2 x std.
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The thresholding and labeling process, in one case 
is illustrated in Figure 1. The density of the peak value 
of the right hill, 126 HU, was taken as the mean value 
of the splenic parenchyma. One-tenth of the peak value 
corresponds to 183 HU on the right side, with a standard 
deviation s =19 HU. Label-3 indicated the density val-
ues of the spleen and designated between mean -1.5s and 
mean +2s.

The second label indicated probable laceration/con-
tusion areas and was marked as red in Figure 2 for two 
slices. We applied morphological operations such as ero-
sion, dilation, opening, and closing to reduce the small 
hypodense areas corresponding to artifacts.

Both sides of the vessel connections are the possible 
false positive regions that mimic laceration. Therefore, 
hyperdense areas at the medial part of the spleen were 
detected and subtracted followed by morphological di-
lation.  We then analyzed the remaining portion of the 
second label and identified the connected components. 
We regarded components larger than 0.03 mL as contu-
sion/laceration, while we classified others as an artifact.

Detection of perisplenic hematoma 
To detect perisplenic hematoma, we first magnified 

the splenic volume in three dimensions using morpho-
logical operations; fourteen voxels in x and y Cartesian 
coordinates, one voxel to above the spleen and four 
voxels to under the spleen. Subtracting the original seg-
mented splenic volume from the magnified splenic vol-
ume revealed the perisplenic region. We applied the same 
thresholding levels and selected label-2 as region of in-
terest (ROI) for hematoma. As an example, two slices of 
a case is displayed in Figure 3. The first column shows 
the output of thresholding and labeling, and the second 

column shows the original Digital Imaging and Commu-
nications in Medicine (DICOM) images with the label-2 
indicated as green. After morphological operations, we 
performed a connected component analysis and calcu-
lated the volumes of each component.

Here, we encountered two possible scenarios for the 
location and the volume of a hematoma. In the first sce-
nario, the hematoma is large and covers almost the entire 
circumference of the spleen. In the second, the hematoma 
volume is small and appears only posterior to the spleen. 
In the first scenario, the volume of the largest component 
has to be more than 4 mL to be labeled as a hematoma. 
Figure 3 is an example of the first case scenario. In the 
second case, the largest component is between 0.4 and 
4 mL, and the centroid of the largest component must 
be posterior to the spleen. In these cases, the hematoma 
commonly accumulated in the posterior aspect of the 
spleen. 

Detection of active extravasation 
To detect active extravasation, we used arterial phase 

and segmented spleen volume. We defined active extrav-
asation as a small group of pixels outside the segmented 
spleen. Therefore, relatively dense and large foci (>0.3 
mL) such as blood vessels, organs, and ribs were detected 
by connected component analysis followed by threshold-
ing, using mean -0.5s as a level of threshold. Then these 
areas were removed, and only small and dense particles 
remained. In Figure 4, white areas indicate the regions 
higher than the threshold level, mean -0.5s. After remov-
ing large components and intersecting with enlarged and 
threshold spleen region, green pixels remained. Compo-

Figure 2: Thresholding and labeling processes of two dif-
ferent slices. Red regions indicate the label-2, the possible 
contusion/laceration areas.

Figure 3: Subtracting the original segmented splenic volume 
from the enlarged spleen (fourteen voxels in x and y Cartesian 
coordinates, one voxel to above the spleen and four voxels to 
under the spleen) revealed the perisplenic region. After thresh-
olding, label-2, highlighted in green, was assumed as the region 
of interest (ROI) for periorgan hematoma.
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nents having density values higher than 190 HU and foci 
less than 0.3 mL in volume were considered active ex-
travasation and indicated as red. In Figure 4, the original 
images are shown in the first column, possible foci of ac-
tive extravasation near the spleen are shown in the second 
column in green, and the foci that meet the last condition 
are detected as active extravasation and indicated in red, 
shown in the third column.

Results
We tested our proposed method in thirty subjects. 

Twenty subjects had splenic trauma, and ten had other 
blunt organ traumas. Laceration/contusion was present 
in eighteen subjects; active extravasation was present 
in four and perisplenic hematoma in twenty cases. We 
validated the performance of our  CAD method by cal-
culating the accuracy, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
positive likelihood ratio (LR+), negative likelihood ratio 
(LR-), and diagnostic odds ratio (DOR) within 95 % con-
fidence interval as displayed in Table 1.

The accuracy value is a metric that counts all positive 

Figure 4: The first column: The original images. The second column: Possible active extravasation areas indicated in green. 
The third column: Detected active extravasation areas are indicated in red. 

Table 1: Diagnosis performance of laceration/contusion, active extravasation, perisplenic hematoma, and all pathologies for 
the proposed computer-aided diagnosis (CAD) methods. The diagnosis indicators of overall performance of the three CAD 
algorithms are given at the last row. 
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and negative predictions.  According to Table 1, accura-
cies of all methods were between 73 % and 90 %, and the 
perisplenic hematoma diagnosis method had the highest 
accuracy. The specificity of the perisplenic hematoma di-
agnosis had the highest value of 80 %. The PPV of the 
detection method for active extravasation of 33 % was 
less than that of other methods because of relatively high 
false positive (FP) value and the low number of active 
extravasation cases. NPVs of all the three methods were 
high, and there was no false prediction among the sub-
jects without active extravasation.

LR+ pertains to the degree of probability of disease 
when the test is positive. On the other hand, LR- is a mea-
sure of how much to decrease it when the test is negative. 
In diagnostic test results, LR+ values should be greater 
than one and LR- values should be less than one. In our 
test results, LR+ was between 1.89 - 4.75 and LR- was 
between 0.00 - 0.11.

For range estimates and significance testing, confi-
dence intervals can be conventionally calculated using as-
ymptotic standard error using the following formula25-27:

where SE is the standard error. We then obtained the 95 % 
confidence interval of the log DOR by using the formula:

We then obtained the confidence interval of the DOR 
by calculating the antilog of this expression.

DOR value of perisplenic hematoma diagnosis had 
the highest value with 76, indicating 76 times higher 
odds for positivity in subjects with perisplenic hematoma 
compared to odds for positivity among subjects without 
perisplenic hematoma.

Among these algorithms, CAD of perisplenic hema-
toma had the highest rates of diagnosis as evidenced by 
high true positive (TP) and true negative (TN) as well as 
low false positive (FP) and false negative (FN) values.

Indicators of overall performance of the three CAD 
algorithms are given at the last row of Table 1 as accuracy 
of 0.80, sensitivity of 0.95, specificity of 0.67, PPV of 
0.71, NPV of 0.94, LR+ of 2.86, LR- of 0.07, and DOR 
of 40 with a range of 14 - 117,  95 % of CI. 

Discussion
Trauma is known as the leading cause of death before 

the age of 40, and overall is the fifth most common cause 
of  mortality28. CT is crucial in the diagnosis of trauma. 
Successful diagnostic workup with CT, among other fac-
tors, also depends on the timely availability of a trauma 
radiologist. Delay in diagnosis or missed radiological 
findings can have significant consequences29. Discordant 
clinical outcomes may warrant repeated CT examina-
tions,  increasing patient’s exposure to radiation, and io-
dinated contrast agent30. Eventually, the result is the loss 

of time, a vital concern for trauma patients, as well as an 
increase in mortality and morbidity.

As an emerging technology, CAD systems have great 
potential for providing accurate and rapid detection of 
lesions automatically or semi-automatically from medi-
cal images. These systems can provide some additional 
information in daily clinical practice such as precise 
estimation of hematoma volume and intraperitoneal/
intracavitary bleeding, along with correlation with the 
patient’s hematocrit, assessment of viable or intact solid 
organ volume as well as the degree of the solid organ 
contusion and overall visceral perfusion. These systems 
can help radiologists detect subtle traumatic solid organ 
lesions and also help surgeons determine the operative or 
non-operative approach, surgery planning, and quantity 
of blood and fluid replacement.

In this study, we developed three CAD methods for 
automated diagnosis of contusion/laceration, hematoma, 
and active extravasation. We also obtained various per-
formance metrics to validate developed methods. Our 
methods have a sensitivity of greater than 94 %. Howev-
er, specificity values of the CAD of laceration/contusion 
and active extravasation were low due to a high number 
of false positives. Our method detected the small lacera-
tions and contusions by applying low-level volumetric 
thresholds, resulting in a high false positive rate. The 
minuscule group of bright voxels in active extravasation 
makes detection difficult. Inhomogeneously enhancing 
segments of a thin vessel can be erroneously detected as 
active extravasation. We observed such segmentation er-
rors, which increased both false positive rate and speci-
ficity.  In cases of perisplenic hematoma detection, both 
sensitivity and specificity rates were high due to high TP 
rate combined with low FN and low FP rate coupled with 
high TN rate. 

The PPV of the active extravasation diagnosis meth-
od was lower than other detection methods at 33 % be-
cause of the high FP rate and the small number of cases. 
NPVs of the three methods were high, and one for active 
extravasation, which means if the result is negative, it is 
correct in 100 % of the subjects.   

LR+ and LR- values indicate the increase and de-
crease percentages for the probability of pathology de-
tection. All LR+ values were greater than one, showing 
an increase in the likelihood of pathology diagnosis ap-
proximately between 15 % and 30 %.  The LR- value 
decreases the probability of determination of pathology 
more than 45 %31.

DOR is an indicator of the effectiveness of a diag-
nostic test15. Odds for positive result among subjects with 
laceration/contusion is 17 times higher than the odds for 
a positive outcome in subjects with no laceration/contu-
sion. The odds for a positive result in cases with active 
extravasation is 20 times higher than the odds for positiv-
ity among subjects with no active extravasation. Finally, 
the odds for a positive outcome among subjects with peri-
splenic hematoma is 76 times higher than the odds for 
positivity among subjects with no perisplenic hematoma. 
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Several other studies have been published about the 
segmentation of injured abdominal organs with limited 
cases. Davis ML et al, semi-automatically calculated 
from CT images the volume of thoracoabdominal in-
jured organs following trauma32. Additionally,  Rezai et 
al  presented a semi-automatic calculation of traumatized 
kidney volume with surrounding perirenal hematoma in 
18 cases without detailed explanation, especially about 
the segmentation of fragmented kidneys due to trauma33.  
Danelson KA et al presented a study about semi-automat-
ically measuring the grade of splenic injuries based on 
CT images and concluded that, with minimal data inputs 
from users, measurement of injury volume was feasible 
though their study involved only five injured spleens34. 

To best of our knowledge, there is no study published 
about automated detection of splenic injuries in the Eng-
lish literature. Our proposed method can be further devel-
oped to determine all traumatic intraabdominal injuries 
from CT images automatically.
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