
162 TZIRIS NHIPPOKRATIA 2008, 12, 3: 162-167

ORIGINAL ARTICLE

Autosomal dominant polycystic kidney disease (AD-
PKD) is a common hereditary disease characterised by 
the progressive expansion of multiple cystic lesions, 
which compromise the function of normal renal paren-
chyma1. A number of observations, in models of inherit-
ed polycystic kidney disease in rodents, have implicated 
oxidative stress in the pathogenesis of ADPKD. Reduced 
expression of antioxidant enzymes and increased expres-
sion of heme oxygenase-1, a marker of oxidative stress, 
have been reported in cystic kidneys from cpk/cpk mice 
and Han:SPRD rats2-4. The modifier gene-2 for polycystic 
kidney disease in Jck mice has been recently identified as 
antioxidant protein-2 (Apo2), a thiol-specific antioxidant 
protein5. Targeted disruption of the Bcl-2 proto-onco-
gene, which has been shown to protect cells from apop-
tosis, caused by oxidative damage, results in renal cystic 
disease6. Torres et al have shown higher renal concen-
tration of α-tocopherol in the cystic kidneys, consistent 
with a disturbance of redox metabolism associated with 
polycystic kidney disease in Han:SPRD Rats7. However, 

no evidence has yet been reported in humans. 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

and several other glycolytic enzymes have been shown to 
bind to the acidic N terminus of the cytoplasmic domain 
of the erythrocyte membrane protein band 3 anion ex-
changer in vitro, and in contrast to earlier views8, recent 
evidence suggests that the interaction is also prominent in 
vivo9-11. The intracellular membrane binding of glycolytic 
enzymes including GAPDH is important for the control 
of glycolysis. The bound enzyme is reported to be inac-
tive and may form a functional reserve that becomes ac-
tive when released from its binding site12. Harrison et al 
reported that oxidizing agents, such as H2O2, promote the 
tyrosine phosphorylation of the GAPDH-binding site on 
band 3 and thereby stimulate both release of GAPDH and 
erythrocyte glycolysis13. Mallozzi et al suggested that the 
increase in glycolytic flux could provide reduced nucleo-
tide (NADH) and energy for cells to cope with oxidative 
stress14.

In ADPKD patients, using the thiol-alkylating agent 
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N-ethymaleimide (NEM), has been determined an abnor-
mality in Na/Li CT (sodium-lithium counter-transport) 
kinetics and membrane lipid fluidity suggesting abnormal 
membrane lipid-cytoskeleton interactions15,16. Watkins et 
al suggested that the NEM could modulate GAPDH bind-
ing to the red cell membrane altering, possibly, the asso-
ciation site on the cell membrane17.

This study was undertaken in order to determine 
whether t-butyl hydroperoxide, a well known agent in-
ducing oxidative stress, could release GAPDH from 
erythrocyte membrane and therefore increase glycolytic 
flux in erythrocytes from ADPKD patients and healthy 
control subjects. Additional research was also carried 
out to investigate whether the modulation of GAPDH-
binding to the red cell membrane of ADPKD patients by 
NEM could lead to changes in glycolytic flux.

Materials and methods
Patients and Healthy Control Subjects: Thirteen Cau-

casian patients with ADPKD, aged between 20 and 50 
years were studied. The diagnosis of ADPKD was based 
on both the demonstration of renal cysts by abdominal 
ultrasound and having a family history of the disease. All 
had serum creatinine less than 2 mg/dl. Four patients had 
hypertension. Twelve healthy subjects from the laborato-
ry staff were studied for comparison. The clinical data of 
healthy subjects and ADPKD patients are given in Table 
1. All subjects gave informed consent to participate in the 
study.

Preparation of intact erythrocytes: Venous whole 
blood (10 ml) was collected in lithium heparin tubes, cen-
trifuged, and the plasma and buffy coat were removed. 
The erythrocytes were washed twice with cooled phos-
phate buffered saline (PBS: 290±2 mosmol/Kg, pH 7.4), 
and separated by centrifugation (3000 g, 5 min, 10° C). 

Glycolysis assay of intact erythrocytes: Erythrocytes 
(0.5-ml packed cells) were incubated at 0° C for 10 sec 
and 300 sec and then equilibrated to room temperature for 
20 min. Afterwards a (10%) red blood cell suspension in 
isotonic PBS (pH 7.4) was prepared. Two hundred fifty µl 
of RBC suspension was mixed with 150 µl PBS and 100 µl 
arsenate (7.5 mmol/l in PBS) to prepare a 5% packed cell 
volume (PCV). D-glucose (500 µl, 10 mM in PBS) was 
added (final volume 1ml) and the mixture was incubated 
at 37° C for 30 min, 60 min and 90 min. Arsenate, which 
uncouples glycolysis from substrate-level phosphoryla-
tion, was added to minimize the dependence of glycolysis 
rate on rate of ATP utilization in the erythrocytes. After 
the appropriate incubation period the suspension was rap-
idly centrifuged (10,000 g for 10 seconds), the superna-
tant removed and its content of L-lactate assayed.

L-lactate determination: Lactate, present in the spun 
supernatant after 30-90 min glycolysis, was determined 
using lactate dehydrogenase by measuring the coupled 
reduction of NAD+ by absorbance at 340 nm in a CO-
BAS® centrifugal analyser18. The lactate concentration 
was expressed in µmol/ml RBC/hr.

Tert-butyl hydroperoxide treatment of erythrocytes: 

In order to cause a mild oxidative stress in erythrocytes, 
the previously described glycolysis assay was performed 
in the presence or absence of 0.06 mM t-butyl hydroper-
oxide. To determine the maximum lactate production with 
minimum concentration of t-butyl hydroperoxide various 
concentrations were used (0-5 mM) (Figure 1).

N-ethymaleimide (NEM) treatment of erythrocytes: 
Erythrocytes (0.5 ml packed cells) were suspended in 
3 ml of choline medium (139 mmol/l choline chloride, 
1 mmol/l MgCl2, 10 mmol/l glucose, 10 mmol/l Tris 
MOPS, pH 6.0, 290±2 mosmol/Kg). NEM (3 µmol in 
100 µl of choline medium) was added and the suspen-
sion incubated at 0°C for the indicated times. The re-
action was stopped by the addition of a 5-fold excess 
of mercaptoethanol in choline medium and immediate 
centrifugation (3000 rpm, 3 min, 10°C). Afterwards the 
erythrocytes were washed 3 times with PBS, pH 7.4, and 
equilibrated to room temperature for 20 min. A range of 
incubation times (0-1000 seconds), different pH values 
(6 and 7.4), various concentrations of NEM (0-5 mM) 
and temperatures (0° and 21° C) as well as choline or 
PBS buffer were used. 

The previously described glycolysis assay was per-
formed in the presence or absence of NEM treated eryth-
rocytes from normal subjects and ADPKD patients

Glycolysis assay in saponin-permeabilized erythro-
cytes: The glycolysis rate of permeabilized cells was as-
sayed as for intact cells except there was added phosphate 
buffer, saponin, NAD+, ATP, and mgcl2. The final concen-
trations in the 1 ml assay volume were: cells, 2.5% (v/v), 
sodium phosphate (pH 7.4), 10 mM; KCl, 139 mM; so-
dium arsenate, 0.75 mM; NAD+, 0.1 mM; ATP, 0.5 mM; 
mgcl2, 1 mM; D-glucose, 5 mM. Saponin was added to 
the glycolysis assay in increasing amounts to find the 
concentration that gave maximum rate of lactate produc-
tion. With a 5 min pre-incubation and 2.5% packed cell 
volume, maximum lactate rate was obtained with 4 µg 
saponin ml-1. The same procedure was also carried out on 
the NEM treated erythrocytes. 

Preparation of erythrocyte ghost membranes: Packed 
erythrocytes (50 µl) from untreated, NEM treated and t-
butyl hydroperoxide treated cells were washed twice with 

Figure 1: The effect of different concentrations of t-butyl 
hydroperoxide on rate of glycolytic lactate production by 
intact erythrocytes from healthy subjects.
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1.5 ml of phosphate buffered saline and 
cooled to 2oC in ice. The erythrocytes were 
then lysed at 2oC in 1.5 ml hypotonic PBS 
[20 mmol/l PBS (40 mosm/kg) contain-
ing 4 mmol/l MgSO4, PMSF (230 µmol/l), 
EDTA (1 mmol/l), pepstatin (1 µmol/l), 
leupeptin (1 µmol/l) and benzamidine (2.5 
mmol/l)]. The ghost membranes were col-
lected by centrifugation at 10,000g for 10 
minutes at 2oC and washed a further twice 
with the lysing buffer. The pellet of eryth-
rocyte ghost membranes was resuspended 
in 50 µl of hypotonic PBS and stored at 
-80oC.

SDS-PAGE and GAPDH determi-
nation: Ghost membrane proteins were separated by 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
using the Laemmli discontinuous system under reducing 
conditions. Gels (1mm thick) of 10.5% total acrylamide 
were used in a Bio-Rad mini-protean system and run at 
10-15 mA per gel. Gels were stained in Coomassie bril-
liant blue (200 mg Coomassie brilliant blue dissolved in 
10:25:65 acetic acid: industrial methylated spirit water) 
for 2 hours. The gel was then distained in 5:5:90 acetic 
acid: industrial methylated spirit: water.

Analysis of Coomassie blue stained gels: Scan analy-
sis was performed on dried, Coomassie stained, gels 
using a BioImage Visage Electrophoresis Gel Analysis 
System, version 4.6Q (Copyright 1993 Millipore Corpo-
ration). The GAPDH/actin ratio was determined from the 
integrated optical density using Whole Band Analysis, 
version 2.4. This ratio probably depended on exact con-
ditions of preparation and washing of ghosts; it was con-
stant between tracks in any one experiment, but some-
what variable between experiments.

Statistical analysis: All values are reported as means 
±SD. The significance of differences between groups 
was assessed using an unpaired t test. The significance 
of differences within groups was assessed using a paired 
t test. 

Results
The clinical data of patients with ADPKD and normal 

control subjects are given in Table 1. Four patients were 
hypertensive otherwise there were no statistically signifi-
cant differences between the two groups.

Treatment of erythrocytes from normal controls with 

high doses of t-butyl hydroperoxide inhibited glycoly-
sis. However, low doses significantly increased the rate 
of lactate production compared with native erythrocytes 
(Figure 1). Corresponding with the increase in glycolytic 
rate, there was a significant decrease in the GAPDH/actin 
ratio (Table 2). By contrast, in ADPKD patients after the 
same treatment, there was no significant change in either 
the rate of lactate production or the GAPDH/actin ratio 
(Table 2). However, the rate of lactate production was al-
ready higher and the GAPDH/actin ratio was significant-
ly lower in erythrocytes from ADPKD patients compared 
with normal controls (Table 2).

The effects of NEM were opposite to that of mild oxi-
dative stress, but here also the same negative correlation 
was observed between lactate rate and ratio of membrane 
associated GAPDH/actin. In control erythrocytes 1 mM 
NEM caused a significant decrease in lactate production 
in 10 sec and 300 sec (Figure 2), and a significant in-

crease in the GAPDH/actin ratio (Table 
3). In erythrocytes from ADPKD patients 
the effects were similar to the controls 
except that the GAPDH/actin ratio was 
significantly more sensitive to NEM, it 
responded significantly more rapidly and 
to a significantly greater extent (Table 3). 

Figure 3 shows the effect of different 
concentrations of NEM on lactate produc-
tion rate in intact healthy erythrocytes. An 

Table 1: Clinical data of healthy control subjects and ADPKD patients

Note. Values are means ± SD. 
Abbreviation: ADPKD, autosomal dominant polycystic kidney disease.

Table 2: Effect of t-butyl hydroperoxide on lactate production rate and mem-
brane GAPDH/actin ratio in control and ADPKD erythrocytes

‡ p=0.028 compared with healthy control.
Lactate production rate is given as µmol h-1 ml-1 (packed erythrocytes), membrane-
bound GAPDH is given as ratio with membrane bound actin. The significance (paired 
t-test; N.S. = not significant) of the comparison of treated and untreated cells from the 
same individual is shown below each column. 

DIOUDIS C

Figure 2: Time-course of the effect of 1 mM N-ethylma-
leimide (NEM), at pH 6 and 0o C, on rate of glycolytic lac-
tate production in intact healthy erythrocytes.
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increase from 0.75 to 5 mM NEM concentration did not 
bring any lower the rate of glycolysis. 

The rate of lactate production increased significantly 
after the treatment of red cells with saponin (Table 4). 

Discussion
In all the experiments reported here the same inverse 

correlation was observed between glycolytic lactate pro-
duction and membrane-bound GAPDH/actin ratio. Tert-
butyl hydroperoxide lowered the GAPDH/actin ratio in 
erythrocyte ghosts from healthy controls but stimulated 
glycolysis, while in erythrocytes from ADPKD patients 
neither effect occurred. N-ethylmaleimide, on the other 
hand, raised the GAPDH/actin ratio but inhibited gly-
colysis. However, there was no quantitative relationship 
between the two effects, and in the erythrocytes from 
ADPKD patients the effect of NEM on glycolysis pre-
ceded that on the GAPDH/actin ratio. These results are 
therefore qualitatively consistent with the experiments 
cited above12-14 one has only to postulate that NEM can 
inhibit glycolysis by a second mechanism in addition 
to the increased binding of GAPDH to the membrane. 
NEM at low pH and temperature is a moderately specific 
thiol-alkylating reagent, and it is known that glycolysis 
is inhibited by thiol alkylation both at hexokinase and at 
GAPDH19. However, neither a 3 fold increase in expo-
sure time (Figure 2) nor a 5 fold increase in NEM con-
centration (Figure 3) brought the rate of glycolysis any 
lower than 50%, and whatever the target of NEM attack it 

would seem therefore not to be a catalytic 
group on a glycolytic enzyme. 

It is generally agreed that glucose 
entry is considerably faster than its sub-
sequent metabolism in the red blood cell, 
especially in man where entry is quoted 
as 250 times as fast as glycolysis20. How-
ever, if glycolysis is speeded by arsenate 
uncoupling, and glucose entry inhibited 
by NEM, it seemed possible that the rate 
of glycolysis in whole erythrocytes could 
be limited to some extent by glucose en-
try and that the effect of NEM on the rate 
of lactate production could have been on 
glucose transport rather than glycolysis 
itself. The forgoing experiments were 

therefore repeated on (healthy control) cells treated with 
saponin where it was expected that glucose entry would 
exercise very little or negligible rate-control21. The re-
sults (Table 4) show that saponin treatment does indeed 

increase the rate of lactate production, al-
though it is not clear whether that is the 
effect of maintaining nucleotide concen-
trations or the removing a rate-limiting 
glucose entry. However, the inhibitory 
effect of NEM on rate of lactate produc-
tion is greater (relative to cells not treated 
with NEM), which rules out transport as 
a significant site of NEM action in these 
experiments.

At high concentration, tert-butyl hy-
droperoxide decreases erythrocyte protein 
thiol content and inactivates GAPDH22. 
However, at low concentration as used 

here, it had an insignificant effect on overall thiol content 
and caused an increase in enzymatic activity of GAPDH 
in human lung carcinoma cells23. It has been suggested 
that t-butyl hydroperoxide has its effect by rather specific 
thiol oxidation (and thus inhibition) of the thiol-depen-
dent enzyme tyrosine phosphatase. This would increase 
phosphorylation of band 3 (as well as other proteins) and 
reduce GAPDH binding at this major site24,25. 

In their response to the mild oxidative stress rep-
resented by a low concentration (0.06 mM) of t-butyl 

Table 3: The effect of N-ethylmaleimide (NEM) on lactate production rate and 
membrane GAPDH/actin ratio in control and ADPKD erythrocytes

Lactate production rate is given as µmol h-1 ml-1 (packed erythrocytes), membrane-
bound GAPDH is given as ratio with membrane bound actin. The significance (paired 
t-test) of the comparison of treated and untreated cells from the same individual is shown 
below each comparison

Table 4: Rate of lactate production in saponin-permeabilized healthy erythro-
cytes after NEM treatment

Note: Values are mean ± SD. The significance (paired t-test) of the comparison of treated 
and untreated cells from the same individual is shown below each column. Abbreviations: 
NEM, N-ethylmaleimide. 

Figure 3: The effect of different concentrations of N-ethyl-
maleimide on lactate production rate in intact healthy eryth-
rocytes.
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hydroperoxide two related differences were observed 
between erythrocytes from healthy control subjects and 
those from ADPKD patients. While healthy erythrocytes 
responded to the peroxide with increased glycolysis and 
decreased GAPDH binding, those from cystic patients 
did not. However, untreated erythrocytes from ADPKD 
patients showed the same high rate of glycolysis and low 
membrane binding of GAPDH as was observed in eryth-
rocytes from healthy subjects after mild oxidative stress. 
Perhaps the simplest explanation is that erythrocytes from 
ADPKD are already subjected in vivo to a mild oxidative 
stress. Alternatively, it could be postulated that the con-
trol of membrane binding of GAPDH (and possibly other 
enzymes) is abnormal in ADPKD even in the absence of 
oxidative stress. In this connection it will be remembered 
that the effect of NEM on GAPDH/actin ratio is signifi-
cantly faster in ADPKD than in healthy controls.

The relationship between these results and the patho-
physiology of ADPKD is not known. However, there are 
a number of results in the literature that point to a pos-
sible relevance26,27. It has been observed that, in patients 
with ADPKD, hypertension is prevalent even in early 
stages of the disease28. The reason for this hypertension 
has not been fully explained29,30. Studies on erythrocytes 
from patients with essential hypertension have shown an 
increased rate of phosphorylation of band 3 protein by 
membrane-bound protein kinases31. Moreover tyrosine 
phosphorylation of human platelet plasma membrane 
Ca(2+)-ATPase is essential in pathophysiology of hyper-
tension32,33. One interesting possibility arising out of our 
work is that the mild oxidative stress that we have inferred 
in ADPKD patients may inhibit protein phosphatases. 
This could release GAPDH from red cell membrane and 
increase glycolytic rate causing hypertension34,35. 

It is of interest that reagents such as hydrogen per-
oxide have long been known to mimic insulin action36. 
Since the insulin receptor is a protein kinase, many of 
insulin effects are thought to be mediated through tyro-
sine phosphorylation37. Reports have shown that hydro-
gen peroxide increases the phosphotyrosine content of 
several putative cellular substrates of the insulin recep-
tor kinase possibly by inhibiting a protein tyrosine phos-
phatise38. In this study we show an increase in glycolytic 
flux after inducing mild oxidative stress in erythrocytes 
from healthy subjects but not from ADPKD patients. This 
could explain in part the insulin resistance that has been 
reported very early in the course of the cystic disease 
in these patients39,40. Chronically high levels of protein 
phosphorylation could contribute to an insulin resistance 
characteristic of both ADPKD and hypertension.

The controlled induction of oxidative stress and the 
maintenance of the cellular redox state are essential for 
the regulation of cell proliferation and for many metabol-
ic processes important in the pathogenesis of Polycystic 
Kidney Disease (PKD)41,42. Although our experiments re-
fer to erythrocytes, if similar defects exist in the renal tu-
bule cells of individuals with ADPKD they could provide 
a possible mechanism for downstream pathogenic events 

in the expansion of renal cysts43,44. Recent studies show 
that the change of tubular cell to a hyperproliferative state 
in PKD involves oxidative stress and kinase phosphory-
lation cascades45,46.

In conclusion, the GAPDH binding and glycolytic 
flux responds abnormally in erythrocytes from ADPKD 
patients to both a mild oxidative stress and brief exposure 
to NEM. This abnormality may suggest either a chronic 
pre-existing mild oxidative stress or an abnormal mem-
brane organization and function in this disease. More 
studies are necessary to clarify whether our findings have 
any causative role in major phenotypes of ADPKD such 
as cyst formation and expansion, hypertension and insu-
lin resistance
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